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Abstract— A important initial step in improving a prediction
system is being able to duplicate the results of the current model
to verify that your prediction model is functioning properly. In
this preliminary work, we will find the optimal SVM model
type and its corresponding parameters for analyzing consistent
genotype data with at least one instance of MCSS ≤ 5.

I. INTRODUCTION

To correctly predict genotypes from allele frequencies,
companies who focus in SNP genotyping must gather redun-
dant data to achieve high levels of accuracy and reliability.
The extra processes and analysis that take place as a result
can lead to high overhead costs. One method of minimizing
these costs is to improve the accuracy of the machine
learning algorithms which process the allele frequency data.
These improvements can lead to a reduction in materials
cost, computational time and an increase in the degree of
confidence in the results. One such technology used for
SNP genotyping is the OpenArrayTM which allows for high-
throughput of single nucleotide polymorphisms (SNPs) geno-
types. In this project, we focused on analyzing the large data
set provided by the OpenArayTM technology and selecting
the best model for the predicting of two-allele frequency data
using a Support Vector Machine (SVM) learning system.

II. BACKGROUND AND RELATED WORK

A. Support Vector Machine

Support Vector Machines are a supervised learning tech-
nique used to classify linearly separable patterns (Fig. 1).
Patterns that are not linearly separable can be mapped by a
kernel function into a linearly separable space (Fig. 2).

Fig. 1: SVM Margin

Two of the more common kernels are a linear function and
a radial basis function (RBF). The linear kernel proposes

a simple transformation and its optimization function can
be calculated relatively fast. The RBF or Gaussian transfor-
mation focuses on the distance a data point has from an
origin to create a linearly separable space. While an RBF
transformation can often produce more accurate results, it
also has a significantly longer training period due to the
higher complexity of its optimization function. The training
algorithms for both functions have parameters that need to
be optimized.

Fig. 2: RBF Kernel

A common parameter to both models is the penalty param-
eter. The penalty parameter is tied to the weight of an error
term. A low penalty value can lead to a simple boundary
surface, while a high penalty value focuses on classifying
training examples accurately. The RBF model also includes
a gamma parameter. The gamma parameter controls the
influence of each single training example has. A high gamma
value leads to a smaller effect radius.

B. OpenArrayTM

The data for this project was gathered by OpenArrayTM

technology. Two allele specific TaqMan probes are used for
capturing genetic data[1]. In order to detect specific SNPs
the probes use a PCR primer pair and fluorescent dyes. This
process generates intensity data that can be translate to a
genotype (Fig. 3). The two intensity values acquired are VIC
and FAM[2]. Allele 1 is tied to VIC, while allele 2 is tied
to FAM. Figure 4 demonstrates some linear separability and
is one of the primary reasons we chose the SVM as our
training model. The dye intensities classify the genotypes
in the following way: a high intensity for VIC points to a
homozygous genotype for allele 1, while a high intensity for
FAM points to a homozygous genotype for allele 2. If both
intensities are presented with similar strengths, we classify
the sample as heterozygous genotype.



Fig. 3: OpenArrayTM

Fig. 4: Allele Marker Intensity Separability

C. Quality Metrics

A Minimum Cluster Sigma Separation (MCSS) score is
assigned to each assay (a collection of repeated measure-
ments). The MCSS score quantifies how clearly separated
the allele intensities are. For example, Figure 4 demonstrates
a case with a high MCSS score since all the plotted allele
intensities can be easily assigned to a genotype cluster. An
MCSS of less than 5 leads to a discarded analysis. When
a single analysis is discarded, the entire assay is marked as
a failed assay. Recovering failed assays is one of the main
goals of this project since failed assays represent about 7.5%
of the total data.

D. Programming Languages

Two programming languages were used in this project:
R and python. Rs statistical analysis toolkit was used for
processing data as well as transferring it into our database. R
studios grid view allowed us to preview our transformation
outputs and helped in the debugging process. Python and
its comprehensive scikit-learn library were used for training
our SVM as well as testing our predictor. We decided to
use SQLite as our database management system since it is
open source and compatible with both, Linux and Window
systems.

1) Scikit-Learning: This machine learning library for
Python supports multiple algorithms to handle a variety
of machine learning tasks[3] such as clustering, regression,
dimensionality reduction and classification. Some of the
learning models included are SVM, K-means and Lasso

regression. Scikit-learn reduces the programming overhead
work by providing an interface that only requires the user
to select a model and parameter. Scikit-learn will be used
through our project to train and predict our SVM model.

2) Pandas: Pandas is an open source python library
created for data structure manipulation and management.

III. METHODS AND IMPLEMENTATION

A. Working Data Set

Our data pool consisted of 8,097 SNP assays. From
this data pool 3,506 assays had at least one instance of
MCSS ≤ and 4,591 assays without any instances of MCSS
≤ 5. This project focuses on the 3,506 assays that had
at least one instance of MCSS ≤ 5 (failed essays) since
the lack of separation makes them harder to predict. This
group of assays can be further separated into a discrepant
and consistent category. The consistent assays predict the
same genotype. 92.5% of these failed-assays belong to the
consistent category (3,243) and only 7.5%-symbol (263) of
the failed assays belong to the discrepant category. In this
preliminary work, we focus on the 263 discrepant assays.
Lastly, we decided to ignore assays that were labeled as Low-
ROX (this is directly tied to the dye florescence intensity)
since this quality also demonstrates a low confidence in the
measurements.
As explained below, we decided to use a 70% majority rule
to label our data set. This means that if within an assay at
least 70% of its data points belonged to the same genotype,
then we assign that genotype to be the ground truth for
the assay. To train and test our model on both, consistent
and inconsistent arrays, we randomly selected 500,000 arrays
from the consistent category. Combining our inconsistent and
consistent data points yields 939,643 data points. These data
points were split 75/25 into a training and testing data sets
with equal ratios of consistent to inconsistent data points.

TABLE I: Assay Distribution by Category

Consistent Discrepant Total
At Least One
MCCS <5

3243 263 3506

No MCCS <5 4511 61 4572
Total 7754 324 8078

B. Majority Threshold for Ground Truth

In order to label discrepant assays, we came up with a
majority threshold rule that can define the ground truth. This
means that if the assigned percentage of arrays within an
assay belong to the same category, then we can label that
assay by the majority genotype and call it the ground truth for
those data points. Since our data set is primarily composed
of consistent data (25,000,000) when varying the majority
threshold percentage, we focused on how many inconsistent
data points this provided us. As expected, as the majority
threshold is increased, the number of arrays that qualify
decreases. The results for varying the majority threshold can
be seen in the table below. In order to have a large enough
training pool while maintaining a high enough majority



threshold, we decided to use 70% as our majority threshold.
This provided 439,643 data points which represent roughly
86% of all the arrays within the inconsistent category.

TABLE II: Majority Threshold Counts for Inconsistent Ar-
rays

Majority Threshold Number of Arrays
Above Threshold

Percent of Total Ar-
rays

90% 350,261 68.16%
80% 401,908 78.21%
70% 439,643 85.55%
60% 485,717 94.52%

C. Python Code for Training and Evaluation

Our training and testing program were written in Python.
Simplified versions of the primary methods used are de-
scribed below.

1) Main Function: The main function handles the over-
head work of loading the locations of the testing and training
files. It also calls the training function and prediction func-
tion.

1 d e f main ( p a r s e r ) :
2 o p t i o n = p a r s e r . p a r s e a r g s ( )
3 # l o a d f i l e l o c a t i o n s
4 t r a i n f i l e = o p t i o n . t r a i n
5 t e s t f i l e = o p t i o n . t e s t
6

7 # t r a i n models
8 ( models , t r a i n a c c , norm model ) = t r a i n s v m m o d e l

( t r a i n f i l e )
9

10 # e v a l u a t e models
11 t e s t e v a l u a t i o n = s v m p r e d i c t i o n ( t e s t f i l e ,

models , norm model )

Listing 1: Main

2) Loading Data: The load matrix function reads one of
the two data files (train or test) and parses it into an X matrix
and y vector. The X matrix will contain our two key features
(allele 1 and allele 2 intensities) while the y vector will
contain the true genotypes used for training and evaluating.

1 d e f l o a d m a t r i x ( f i l e n a m e ) :
2 X = [ ]
3 y = [ ]
4

5 fh = open ( f i l e n a m e , ’ rb ’ )
6 t i t l e = fh . r e a d l i n e ( )
7 f o r l i n e i n fh :
8 m i n i d a t a = l i n e . r s t r i p ( ) . s p l i t ( ”\ t ” )
9 a l l e l e 1 = f l o a t ( m i n i d a t a [ 3 ] )

10 a l l e l e 2 = f l o a t ( m i n i d a t a [ 4 ] )
11 t r u e g e n o t y p e = m i n i d a t a [ 6 ] . r s t r i p ( ’ \” ’ ) .

l s t r i p ( ’ \” ’ )
12

13 X. append ( [ a l l e l e 1 , a l l e l e 2 ] )
14 y . append ( t r u e g e n o t y p e )
15

16 fh . c l o s e ( )
17

18 r e t u r n (X, y )

Listing 2: Load Matrix

3) Training Method: The training method is in charge of
fitting our models using the training data. It also needs to
return the normalized model so that the test data can be
normalized by the same factor during our evaluation phase.
The training function also iterates through our parameter
values and generates a model for each combination of
parameters. In the case of the linear SVM the only parameter
we modify is the penalty factor c, for our RBF model we
also need to iterate through the kernel coefficient g.

1 d e f t r a i n s v m m o d e l ( t r a i n f i l e ) :
2

3 # Load t r a i n i n g d a t a
4 (X, y ) = l o a d m a t r i x ( t r a i n f i l e )
5

6 # N o r m a l i z e s d a t a
7 norm model = MinMaxScaler ( )
8 norm X = norm model . f i t t r a n s f o r m (X)
9

10 # T r a i n Models
11 C range = [ 0 . 0 1 , 0 . 0 3 , 0 . 1 , 0 . 3 , 1 , 3 , 10]
12 f i t s = [ ]
13 acc = [ ]
14 f o r c i n C range :
15 # f i t t e d model
16 f = svm . SVC( k e r n e l = ’ l i n e a r ’ , C = c )
17

18 f i t s . append ( f . f i t ( norm X , y ) )
19 acc . append ( f . s c o r e ( norm X , y ) )
20

21 r e t u r n ( f i t s , acc , norm model )

Listing 3: Train Linear SVM

1 d e f t r a i n s v m m o d e l ( t r a i n f i l e ) :
2

3 # Load t r a i n i n g d a t a
4 (X, y ) = l o a d m a t r i x ( t r a i n f i l e )
5

6 # N o r m a l i z e s d a t a
7 norm model = MinMaxScaler ( )
8 norm X = norm model . f i t t r a n s f o r m (X)
9

10 # T r a i n Models
11 C range = [ 0 . 1 , 0 . 3 , 1 , 3 , 10 , 30 , 100]
12 g r a n g e = [ 1 , 3 , 10 , 30 , 100 , 300 , 1000]
13 f i t s = [ ]
14 acc = [ ]
15 f o r c i n C range :
16 f o r g i n g r a n g e :
17 # f i t t e d model
18 f = svm . SVC( k e r n e l = ’ l i n e a r ’ , C = c , gamma =

g )
19

20 f i t s . append ( f . f i t ( norm X , y ) )
21 acc . append ( f . s c o r e ( norm X , y ) )
22

23 r e t u r n ( f i t s , acc , norm model )

Listing 4: Train RBF SVM

4) Evaluate Method: The evaluate method is in charge
of calculating the multiple metrics that help us qualify our
models. The classification report function of the scikit-learn
package can produce the precision, recall and F-1 scores. We
also use the score function to calculate the overall accuracy.
Lastly, this method also generates a prediction matrix to
analyze how well each genotype was predicted.

1 d e f s v m p r e d i c t i o n ( t e s t f i l e , models , norm model ) :
2 echo ( ” Loading M at r i x ” )



3 (X, y ) = l o a d m a t r i x ( t e s t f i l e )
4

5 echo ( ” N o r m a l i z a t i o n ” )
6 norm X = norm model . f i t t r a n s f o r m (X)
7

8 e v a l u a t i o n = [ ]
9

10 f o r m i n models :
11 p r e d i c t y = m. p r e d i c t ( norm X )
12

13 # compute o v e r a l l a c c u r a c y
14 acc = m. s c o r e ( norm X , y )
15

16 # c l a s s i f i c a t i o n r e p o r t
17 t a r g e t n a m e s = [ ” 11 ” , ” 12 ” , ” 22 ” ]
18 r e p o r t = c l a s s i f i c a t i o n r e p o r t ( y , p r e d i c t y ,

t a r g e t n a m e s = t a r g e t n a m e s )
19

20 # p r e d i c t i o n m a t r i x
21 p r e d i c t i o n m a t r i x = [ [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] ]
22

23 fh = open ( ” s vm l ine a r mi nm ax . t x t ” , ’wb ’ )
24 fh . w r i t e ( ” P r e d i c t i o n \ t T r u t h \n ” )
25

26 f o r i i n x ra ng e ( l e n ( p r e d i c t y ) ) :
27

28 fh . w r i t e ( ”%s\ t%s\n ” %( p r e d i c t y [ i ] , y [ i ] ) )
29

30 i f ( p r e d i c t y [ i ] == ” 11 ” and y [ i ] == ” 11 ” ) :
31 p r e d i c t i o n m a t r i x [ 0 ] [ 0 ] += 1
32 e l i f ( p r e d i c t y [ i ] == ” 11 ” and y [ i ] == ” 12 ” ) :
33 p r e d i c t i o n m a t r i x [ 0 ] [ 1 ] += 1
34 e l i f ( p r e d i c t y [ i ] == ” 11 ” and y [ i ] == ” 22 ” ) :
35 p r e d i c t i o n m a t r i x [ 0 ] [ 2 ] += 1
36 e l i f ( p r e d i c t y [ i ] == ” 12 ” and y [ i ] == ” 11 ” ) :
37 p r e d i c t i o n m a t r i x [ 1 ] [ 0 ] += 1
38 e l i f ( p r e d i c t y [ i ] == ” 12 ” and y [ i ] == ” 12 ” ) :
39 p r e d i c t i o n m a t r i x [ 1 ] [ 1 ] += 1
40 e l i f ( p r e d i c t y [ i ] == ” 12 ” and y [ i ] == ” 22 ” ) :
41 p r e d i c t i o n m a t r i x [ 1 ] [ 2 ] += 1
42 e l i f ( p r e d i c t y [ i ] == ” 22 ” and y [ i ] == ” 11 ” ) :
43 p r e d i c t i o n m a t r i x [ 2 ] [ 0 ] += 1
44 e l i f ( p r e d i c t y [ i ] == ” 22 ” and y [ i ] == ” 12 ” ) :
45 p r e d i c t i o n m a t r i x [ 2 ] [ 1 ] += 1
46 e l i f ( p r e d i c t y [ i ] == ” 22 ” and y [ i ] == ” 22 ” ) :
47 p r e d i c t i o n m a t r i x [ 2 ] [ 2 ] += 1
48

49 fh . c l o s e ( )
50 e v a l u a t i o n . append ( ( acc , r e p o r t ,

p r e d i c t i o n m a t r i x ) )
51 r e t u r n e v a l u a t i o n

Listing 5: Evaluate

IV. EVALUATION

A. Model Selection

We considered two models for our analysis: a Linear
SVM and a RBF SVM. Their accuracy is laid out in the
tables below. The linear SVM showed little sensitivity to
the parameter sweep with its testing accuracy remaining the
same. The RBF presented higher sensitivity to parameter
tuning and it also produced a higher accuracy within the same
range of the penalty parameter c. However, the linear model
training time was significantly faster. The training time was
less than a day for the Linear models while the RBF model
with high g and c values took a couple of days to finish.

1) Linear SVM: The Linear SVM model only showed an
absolute range of 0.01% in the overall accuracy (Table III).

TABLE III: Results for the Linear SVM

c Training
Accuracy

Testing
Accuracy

F-1 Score Overall
Accuracy

0.01 0.7324 0.7337 0.71 0.732725
0.03 0.7324 0.7338 0.71 0.73275
0.1 0.7324 0.7338 0.71 0.73275
0.3 0.7325 0.7338 0.71 0.732825
1 0.7325 0.7338 0.71 0.732825
3 0.7324 0.7338 0.71 0.73275
10 0.7325 0.7338 0.71 0.732825
30 0.7325 0.7338 0.71 0.732825

2) RBF SVM: The RBF SVM model revealed an absolute
range of 0.29% for its overall accuracy and its least accurate
model outperformed the best Linear SVM model (Table IV).

TABLE IV: Results for the RBF SVM

c g Training
Accu-
racy

Testing
Accu-
racy

F-1
Score

Overall
Accu-
racy

0.1 1 0.742109 0.743264 0.72 0.74239775
0.1 3 0.743044 0.744039 0.73 0.74329275
0.1 10 0.744333 0.745287 0.73 0.7445715
0.3 1 0.742279 0.743294 0.72 0.74253275
0.3 3 0.74317 0.744261 0.73 0.74344275
0.3 10 0.745105 0.745755 0.73 0.7452675
1 1 0.742394 0.74329 0.72 0.742618
1 3 0.743412 0.744346 0.73 0.7436455
1 10 0.744794 0.745453 0.73 0.74495875
3 1 0.742416 0.743354 0.72 0.7426505
3 3 0.74362 0.744656 0.73 0.743879
3 10 0.744934 0.745453 0.73 0.74506375
10 1 0.7426 0.743614 0.72 0.7428535
10 3 0.74393 0.74495 0.73 0.744185
10 10 0.745106 0.745499 0.73 0.74520425

B. RBF Parameter Sweep

Since the RBF model produced an overall higher accuracy
compared to the Linear SVM model, we chose it for further
analysis. In this section we present the results of a parameter
sweep on the RBF model. The range of the penalty value c
values was from 0.1 to 100 and the kernel coefficient from
1 to 1000.

The highest accuracy was produced by model c = 1 and
g = 1000, however we chose model c = 0.3 and g = 300
for further analysis, since the higher c and g value models
significantly increased the training time for our model. Figure
V shows that both points reside near the peak of the accuracy
plot. With only a minor sacrifice in accuracy, our second best
model training time was reduced from a couple of days to
about a day.



TABLE V: Parameter Sweep Results for RBF SVM Models

c g Training
Accu-
racy

Testing
Accu-
racy

F-1
Score

Overall
Accu-
racy

0.1 1 0.742109 0.743264 0.72 0.74239775
0.1 3 0.743044 0.744039 0.73 0.74329275
0.1 10 0.744333 0.745287 0.73 0.7445715
0.1 30 0.74512 0.745708 0.73 0.745267
0.1 100 0.74594 0.7463 0.73 0.74603
0.1 300 0.746712 0.746244 0.73 0.746595
0.1 1000 0.746779 0.744546 0.73 0.74622075
0.3 1 0.742279 0.743294 0.72 0.74253275
0.3 3 0.74317 0.744261 0.73 0.74344275
0.3 10 0.745105 0.745755 0.73 0.7452675
0.3 30 0.745322 0.745802 0.73 0.745442
0.3 100 0.746324 0.746474 0.73 0.7463615
0.3 300 0.747576 0.746828 0.73 0.747389
0.3 1000 0.749644 0.746338 0.73 0.7488175
1 1 0.742394 0.74329 0.72 0.742618
1 3 0.743412 0.744346 0.73 0.7436455
1 10 0.744794 0.745453 0.73 0.74495875
1 30 0.745527 0.745853 0.73 0.7456085
1 100 0.746539 0.746457 0.73 0.7465185
1 300 0.748065 0.746798 0.73 0.74774825
1 1000 0.750949 0.746942 0.73 0.74994725
3 1 0.742416 0.743354 0.72 0.7426505
3 3 0.74362 0.744656 0.73 0.743879
3 10 0.744934 0.745453 0.73 0.74506375
3 30 0.745654 0.745921 0.73 0.74572075
3 100 0.746834 0.746478 0.73 0.746745
10 1 0.7426 0.743614 0.72 0.7428535
10 3 0.74393 0.74495 0.73 0.744185
10 10 0.745106 0.745499 0.73 0.74520425
30 1 0.742729 0.743643 0.72 0.7429575
30 3 0.74468 0.745312 0.73 0.744838
100 1 0.742938 0.743822 0.72 0.743159
100 3 0.744673 0.745257 0.73 0.744819

Fig. 5: RBF Contour Plot

C. Prediction Results with Best RBF Model

Table VI summarizes the results produced by evaluating
our chosen model (c = 0.3 and g = 300) on our test set.
Predicting the genotype 12 has the lowest performance in
every statistical category. This was expected due to genotype

12 having the least amount of linear separation from the other
two types.
Table VI summarizes four statistically significant figures:

TABLE VI: Test Set Results for Model g = 0.3 and g = 300

Precision Recall F-1 Score Support
11 0.76 0.90 0.82 100,993
12 0.62 0.33 0.43 43,154
22 0.77 0.77 0.77 90,761
Average /
Total

0.74 0.75 0.73 234,911

precision, recall, F-1 score and support for each genotype
in our experiment. The precision is a measure of how many
of our positive predictions were actually correct, the recall
refers to our true positive rate or the percentage of positive
cases that we manage to capture, the F1-score is a mixed
measure of both the recall and precision. Lastly, support
refers to the quantity of true cases for that class. Below are
the formulas for each statistical definition in terms of the
true positive (tp), false positive (fp), true negative (tn), and
false negative (fn) counts.

precision =
t p

t p+ f p
(1)

recall =
t p

t p+ f n
(2)

F −1Score = 2 · recall · precision
recall + precision

(3)

Table VII gives a breakdown of the prediction rate cross
referenced by genotype for our test set. By looking at the
total for the true counts we can see that genotype 12 has a
lower count compared to genotype 11 and 22.

TABLE VII: Prediction Table for Model g = 0.3 and g = 300

True 11 True 12 True 22 Total
Predicted
11

91,061 14,431 15,067 120,559

Predicted
12

3,255 14,371 5,684 23,310

Predicted
22

6,677 14,352 70,010 91,039

Total 100,993 43,154 90,761 234,908

D. K-Fold Validation

To test how well our model generalizes to different data
sets we applied a 4-fold cross-validation[4]. We randomly
partitioned our data into 4 sets. We then used three sets for
training and one set for testing. The results for each fold
are shown in Table VIII. Our results show that our model
generalizes well to each randomly generated fold.

E. Predicting Non-Majority Genotypes

To qualify the predicting capabilities of our model further
we will measure the cohesiveness of our predictions when
working with non-majority data. As described in the Working
Data Set section the method we used to label our data was to
only label those data sets where the arrays within a sample



TABLE VIII: K-Fold Validation for Model g = 0.3 and g =
300

Training
Accuracy

Testing
Accuracy

Overall
Accuracy

F-1 Score

k-1 0.747595 0.746781 0.7473915 0.73
k-2 0.747965 0.745865 0.74744 0.73
k-3 0.747907 0.745886 0.74740175 0.73
k-4 0.747576 0.746845 0.74739325 0.73

had a majority genotype above 70%. In this section we will
try to predict data that did not meet that 70% majority
threshold and we will analyze how well our model can
predict a majority genotype. We can see from our results

TABLE IX: Predicting Accuracy for Non-Majority Data

Majority
Threshold

# of samples
above majority
threshold

# of samples Ratio

0.6 339 420 0.807
0.7 279 420 0.664
0.8 204 420 0.486
0.9 123 420 0.293
0.95 80 420 0.19

that even though none of these samples achieved a majority
genotype as per their original labels, our model managed
to achieve a much higher cohesiveness. Even at a higher
threshold than we set originally such as 80% we can see
that roughly half of the samples have a majority genotype.
These results do not show the accuracy of our results but
instead qualify how well our model can predict data from
the same samples.

V. CONCLUSIONS

In this work we managed to discover that a Radial Basis
Function SVM model with a penalty parameter c = 0.3
and a gamma parameter g = 300 produce a model with
optimal accuracy that can be trained within a reasonable
time frame. We were also able to show that predicting
heterozygous genotypes accurately will require further work
such as mapping the data to a more linearly separable space
before training. Using a 4-fold cross validation technique we
were able to show that our model generalizes well to new
data and that it did not over-fit our training data set. Lastly,
we were able to show that our model has high cohesiveness
when predicting non-majority genotype data.

ACKNOWLEDGMENTS

I wanted to thank professor Wei Wang for all her help,
guidance, advice and patience during this project. I also
wanted to thank Chelsea Ju for working with me on this
project as well as answering my many questions regarding
this topic.

REFERENCES

[1] Thermo Fisher Scientific. (2010). TaqMan Gene Expression Assays
Protocol. Carlsbad, CA: Life Technologies

[2] Thermo Fisher Scientific. (2018). TaqMan Gene Expression
Assayssingle-tube assays User Guide. Pleasanton, CA: Life Technolo-
gies

[3] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning
in Python. Journal of machine learning research, 12(Oct), 2825-2830.

[4] Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of
the variance of k-fold cross-validation. Journal of machine learning
research, 5(Sep), 1089-1105.


